A multimodal, multidimensional atlas of the C57BL/6J mouse brain.
نویسندگان
چکیده
Strains of mice, through breeding or the disruption of normal genetic pathways, are widely used to model human diseases. Atlases are an invaluable aid in understanding the impact of such manipulations by providing a standard for comparison. We have developed a digital atlas of the adult C57BL/6J mouse brain as a comprehensive framework for storing and accessing the myriad types of information about the mouse brain. Our implementation was constructed using several different imaging techniques: magnetic resonance microscopy, blockface imaging, classical histology and immunohistochemistry. Along with raw and annotated images, it contains database management systems and a set of tools for comparing information from different techniques. The framework allows facile correlation of results from different animals, investigators or laboratories by establishing a canonical representation of the mouse brain and providing the tools for the insertion of independent data into the same space as the atlas. This tool will aid in managing the increasingly complex and voluminous amounts of information about the mammalian brain. It provides a framework that encompasses genetic information in the context of anatomical imaging and holds tremendous promise for producing new insights into the relationship between genotype and phenotype. We describe a suite of tools that enables the independent entry of other types of data, facile retrieval of information and straightforward display of images. Thus, the atlas becomes a framework for managing complex genetic and epigenetic information about the mouse brain. The atlas and associated tools may be accessed at http://www.loni.ucla.edu/MAP.
منابع مشابه
Multimodal, multidimensional models of mouse brain.
Naturally occurring mutants and genetically manipulated strains of mice are widely used to model a variety of human diseases. Atlases are an invaluable aid in understanding the impact of such manipulations by providing a standard for comparison and to facilitate the integration of anatomic, genetic, and physiologic observations from multiple subjects and experiments. We have developed digital a...
متن کاملEffect of neuregulin-1 on the auditory cortex in adult C57BL/6J mice
Objective(s): We sought to explore whether neuregulin-1(NRG1) would have a protective effect on the auditory cortices of adult C57BL/6J mice.Materials and Methods: We used RTPCR and Western blot (WB) to detect the expression of NRG1 and ERBB4 (the receptor of NRG1) in the auditory cortices of C57BL/6J mice of different ages (6–8 weeks an...
متن کاملDiffusion tensor imaging and micro-computed tomography based three dimensional stereotaxic atlas of the adult C57BL/6J mouse brain corrected for postmortem tissue deformation
by comparing the mid-sagittal section from the Paxinos atlas and corresponding DEC map from the shrinkagecorrected CT-DTI atlas. Crosshairs mark the location of the bregma. Scale is in units of mm. Fig. 1: The shrinkage-corrected CT-DTI atlas. A) Section from the population-averaged in vivo T2-w template of adult C57BL/6J brain. B) AVM map of the section in A. C) Shrinkage-distortion corrected ...
متن کاملA High-Resolution Anatomical Framework of the Neonatal Mouse Brain for Managing Gene Expression Data
This study aims to provide a high-resolution atlas and use it as an anatomical framework to localize the gene expression data for mouse brain on postnatal day 0 (P0). A color Nissl-stained volume with a resolution of 13.3 x 50 x 13.3 mu(3) was constructed and co-registered to a standard anatomical space defined by an averaged geometry of C57BL/6J P0 mouse brains. A 145 anatomical structures wer...
متن کاملIn Vivo 3D Digital Atlas Database of the Adult C57BL/6J Mouse Brain by Magnetic Resonance Microscopy
In this study, a 3D digital atlas of the live mouse brain based on magnetic resonance microscopy (MRM) is presented. C57BL/6J adult mouse brains were imaged in vivo on a 9.4 Tesla MR instrument at an isotropic spatial resolution of 100 mum. With sufficient signal-to-noise (SNR) and contrast-to-noise ratio (CNR), 20 brain regions were identified. Several atlases were constructed including 12 ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of anatomy
دوره 204 2 شماره
صفحات -
تاریخ انتشار 2004